你当前的位置:首页>>行业相关>>行业动向  
                           虚拟制造技术与数字化工艺

 4、VM在数字化工艺中的应用

 4.1 数字化工艺的概念

    对切削加工而言,早在本世纪初切削的工艺模型就引起研究者的关注,但一直到本世纪40 60年代,在切削机理方面的几项突破使切削研究有可能建立在材料的物理层面上,到本世纪80年代以后,随着计算技术和测量技术的进展,大量的工作集中在工艺过程的分析、建模与仿真,他们对不同的工艺过程(车、铣、钻、铸、冲压等)的不同方面(力模型、热模型、误差模型、材料变形模型等)及不同的加工材料(金属、复合材料等)做了大量的工作,取得了丰硕的成果,一些结果已应用于工业界,获得了满意的效果。然而,这些研究成果仍未大面积的推广应用,原因在于研究的不系统性。也就是说,各自独立的研究只是针对工艺过程的一个侧面的,而且各自采用了不同的数据结构及不同的分析处理方法,当人们想解决一个稍微不同的问题时,人们既不可能联合不同的模型,也不可能简单地修改模型本身。虚拟制造概念的提出使我们能够总结以往的研究成果,以系统的观点来处理工艺过程模型,而不是将工艺看成是分离的不同侧面。

    传统上,工艺的设计与校验典型地通过制造一个实物原型来完成,而基于工艺的可制造性评估则根据加工的成本和时间来确定加工的难度,加工时间和成本由零件材料、加工特征和加工参数的手册值决定,虚拟制造技术在多方面改进了传统的工艺设计和校验:

    通过“数字化加工过程”,不需要制造昂贵的实物原型就可在计算机上校验工艺设计;

    通过“数字化加工过程”不仅可精确地估计制造时间和成本,还可估计其它重要参数,如:零件质量;

    通过“数字化加工过程”可以更直观地“观察”加工过程,如磨削过程中单个磨粒的微观表现,切削中的应力与热流,
卡具的变形。这些有助于我们更精确和更有创造性地设计加工过程。

    “数字化加工过程”包含二层含义:一是刀具路径仿真,即建立工件/工具/机床的实体模型,刀具沿着由工艺确定的轨迹切削,一些不适当的刀具轨迹(刀具/夹具干涉)很容易地被发现;二是评估是否在加工工艺中说明的工艺参数是合适的,如大的切深会产生颤震,毁坏刀具、工件,高的进给率导致不可接受的表面粗糙度,研究者已经在刀具路径校验方面做了大量工作,也有大量工作是有关加工过程的物理效应模型,在虚拟加工过程中将表达切削的物理效应的模型和表达切削几何的实体模形结合起来,完整地表达切削。在虚拟制造环境下,物理模型与实体模型的规范描述和系统集成将不仅能评估现有的工艺过程,而且能为新工艺的创新与设计提供有力手段。

 4.2 数字化加工过程的系统结构

    工艺过程数字原型是真实工艺过程在虚拟世界(计算机)的影射,模型反映的是工艺过程一个侧面的特性,因此工艺过程数字原型是反映工艺过程各个侧面特性的模型及其相互关系的集合。

    一般基本工艺过程可抽象地表达如图2。
        
                  图2: 单元工艺

    在上图,基本的加工过程可表达为:输入为毛坯,利用设备在工艺信息的指挥下加工出产品和产生废弃物;在右图,与加工过程相关的物理实体是工具(刀具与卡具,有时也包括机床)和工件,而所有与工艺过程相关的物理效应主要都发生在这些实体上,因此,我们可以基于工件、刀具和卡具产品模型来构造规范化的数字化加工过程结构,即将加工过程处理作为一个四维的过程,即:空间三维和时间维。任意一个工艺过程效应都发生在特定的位置和时间,因此任意一个工艺过程效应都可看作一个四维空间点上的属性,这样的处理使不同的模型之间建立了一种统一、规范而直接的对应关系,从而有利于较好描述具有多种物理效应和复杂耦合关系的工艺过程,建立结构化的加工过程数字原型,加工过程数字原型的结构如下图所示,分四层:
                
                        图3: 数字化加工过程的系统结构

    第一层为几何实体层,建立与工艺过程相关的物理实体的几何模型;第二层为运动学模型层,基于第一层模型和运动轨迹信息,建立几个几何实体之间相互运动的关系;第三层为物理模型层;基于第二层中几何实体之间的相互关系(时间轴上和位置上的)和工艺信息(材料、加工条件)建立物理效应模型(断裂、变形、力),这些物理效应彼此相互作用,构成了复杂的网络关系;在输出层,按特定的顺序搜集、排列第三层的输出,获得完整的工艺特性结果,如:按空间搜集所有留在毛坯上的材料,即为加工后工件形状。

 4.3 工件表面误差的分析实验

    图4为棒铣刀加工表面的一个试验结果,图中比较了加工表面误差,理论与实验结果很一致。
               
                   图4: 棒铣刀加工表面误差比较

 主要参考文献
  [1]. Zheng L., Liang S.Y., “Identification of Cutter Axis.Tilt in End Milling*”Transaction of ASME, Journal of Manufacturing Science and Engineering, 1998.2
  [2]. Zheng L., Liang S.Y., “Analysis of End Milling Forces with cutter Axis Tilt”
Transaction of NAMRI/SME,Vol.23,1995 P137-142
  [3]. Zheng L.,Chiou Y.S., Liang S.Y., “Three dimensional cutting force analysis in end milling ”,Int. J of manufacturing science, 1995,37(10)
  [4]. Beverly A. Beckert, Venturing into virtual product development, Modern Manufacturing, September 1996
  [5]. Paul Dvorak, Engineering puts virtual reality to work, Modern Manufacturing, October 1997
  [6]. Edward Lin, Inoannis Minis, Dana S. Nau and William Regli, Contribution to Virtual Manufacturing Background Research , May1995
  [7]. Virtual Manufacturing User Workshop, DoD Joint Directors of Laboratories, 25-26 Oct. 1994

共 2 页: 【上一页
版权所有   民众工作室.制作